Reconstruction of Manifolds in Noncommutative Geometry
نویسندگان
چکیده
We show that the algebra A of a commutative unital spectral triple (A,H,D) satisfying several additional conditions, slightly stronger than those proposed by Connes, is the algebra of smooth functions on a compact spin manifold.
منابع مشابه
Riemannian manifolds in noncommutative geometry
We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spinc manifolds; and conversely, in the presence of a spinc structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincaré ...
متن کاملNoncommutative Geometry of Foliations
We review basic notions and methods of noncommutative geometry and their applications to analysis and geometry on foliated manifolds.
متن کاملEgorov’s theorem for transversally elliptic operators on foliated manifolds and noncommutative geodesic flow
The main result of the paper is Egorov’s theorem for transversally elliptic operators on compact foliated manifolds. This theorem is applied to describe the noncommutative geodesic flow in noncommutative geometry of Riemannian foliations.
متن کاملOn Noncommutative and semi-Riemannian Geometry
We introduce the notion of a semi-Riemannian spectral triple which generalizes the notion of spectral triple and allows for a treatment of semiRiemannian manifolds within a noncommutative setting. It turns out that the relevant spaces in noncommutative semi-Riemannian geometry are not Hilbert spaces any more but Krein spaces, and Dirac operators are Kreinselfadjoint. We show that the noncommuta...
متن کاملS ep 2 00 6 Gravity and the Noncommutative Residue for Manifolds with Boundary ∗
We prove a Kastler-Kalau-Walze type theorem for the Dirac operator and the signature operator for 3, 4-dimensional manifolds with boundary. As a corollary, we give two kinds of operator theoretic explanations of the gravitational action in the case of 4-dimensional manifolds with flat boundary. Subj. Class.: Noncommutative global analysis; Noncommutative differential geometry. MSC: 58G20; 53A30...
متن کامل